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Abstract. The features of land cover objects in digital raster images are often described by their pattern, 
connectivity, and fragmentation. While there are many quantitative measures for pattern and connectivity 
fragmentation is usually described in a qualitative way, and often for a specific species only living in the 
landscape under study. The notion of fragmentation comprises many aspects of image properties. A daunting 
task could be the bottom up approach to derive a series of indicators describing all kind of aspects and then 
trying to summarize them. In contrast, this study suggests a top-down approach, illustrating and comparing the 
use of three holistic concepts, based on geometric principles only, and resulting in normalized, quantitative 
fragmentation metrics describing both, the overall degree as well as the spatial distribution of fragmentation on 
any categorical land cover map. After providing the motivation for using the frameworks of contagion, 
complexity, and spatial entropy their algorithmic implementation is explained. The performance and features of 
the proposed three concepts are exemplified on a binary forest mask. Together with a batch-processing option 
these tools are available within the free image analysis software GuidosToolbox. The user-friendly provision of 
operational tools for a generic and especially quantitative assessment of fragmentation could contribute to an 
improved understanding and interpretation of landscape dynamics. Monitoring and especially quantifying the 
impact of human activities on our landscapes may also facilitate the design of efficient and assessable landscape 
resource policies and risk assessment studies. 
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1. Introduction 

Landscape fragmentation has been linked to a number of environmental consequences 
including physical effects, Saunders et al. (1991), and biological effects such as a decline in 
biodiversity due to the loss and isolation of the habitat and/or species, Kupfer and Franklin 
(2009). Landscape fragmentation comprises many different patch aspects, such as the number 
and typical shape, the inter-patch distance, pattern, connectivity, and patch configuration. 
While there are many quantitative measures for pattern, McGarigal et al. (2012), Soille and 
Vogt (2008), Wickham et al. (2010), Vogt (2014), and connectivity, Saura and Torné (2009), 
Saura et al. (2011), fragmentation is usually provided as a qualitative description for a 
specific species living in the landscape under study. Yet, a generic description and 
interpretation of landscape dynamics in general requires a neutral, repeatable and especially 
quantitative assessment of fragmentation. On a categorical map fragmentation can be 
described as the spatial heterogeneity, or the spatial composition and arrangement of 
foreground objects in an image. In addition, fragmentation accounts for the number of objects 
and the distance between them, hence addressing foreground and background characteristics 
at the same time. Due to its holistic nature the description of fragmentation may be rather 
complex when accounting for and especially when trying to summarize its individual 
components. Moreover, current fragmentation definitions, see Bogaerts et al. (2012) for a 
comprehensive list of fragmentation definitions, are usually descriptive. Like the well-known 
definition of Forman (1995): Fragmentation is the breaking up of a habitat, ecosystem, or 
land-use type into smaller parcels, which is not directly suitable to quantify fragmentation. In 
this paper we will focus on three geometric concepts tailored to describe and quantify 
fragmentation: contagion, complexity, and entropy. 

Contagion: Some methods to detect fragmentation use the concept of aggregation, He et 
al. (2000) or spatial contagion. Li et al. (2012) used a sliding window analysis outlined in 
Riitters (2000, 2002) to detect transitions from intact forest areas. A similar approach was 
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applied by Riitters et al. (2012) to detect degradation of forest and grass-shrub vegetation due 
to its proximity to anthropogenic land uses. In general, contagion can be interpreted as the 
complement to fragmentation, i.e. areas having low spatial contagion are highly fragmented 
and vice versa.  

Complexity: In computer science concepts of algorithmic information theory, MacKay 
(2003), can be applied to measure the essential information content of image objects. For a 
simple example of a text string, the Kolmogorov complexity, Kolmogorov (1998), is the 
length of the shortest possible representation of the given string using a lossless compression 
technology. The degree of complexity can be described as the difference of the original to its 
compressed string length. Using this notion, a boundary condition is found for an 
incompressible string with an algorithmically random representation. Zenil et al. (2012) 
suggest using Bennett's concept of logical depth, Bennett (1988, 1990), as an improved 
version of the Kolmogorov complexity. While the latter measures string length compression 
size the logical depth uses decompression times to estimate complexity. Here, the idea is that 
time-consuming decompression is directly related to a high degree of complexity/information 
and fast decompression is found for trivial shaped objects or a random distribution, where the 
compression and decompression algorithm is straightforward. Although examples show that 
the logical depth might be better suited to measure the complexity of objects in the physical 
world, a remaining challenge is the reliable measurement of the actual decompression time, 
which is difficult to single out from all other ongoing processes running at the same time in 
the operating system. Li et al. (2009) exemplified the L–Z complexity method, Lempel and 
Ziv (1976), for the measurement of landscape fragmentation on simulated and real urban land 
use data. Here, a binary map is transferred into a sequence of characters, which is then 
scanned from left to the right and the complexity counter is increased when a new 
subsequence of consecutive characters is encountered. Compared to the traditional set of 
landscape metrics they found it to be a better approach to quantify landscape fragmentation. 
These examples illustrate that the holistic concept of complexity may be used to describe the 
amount and the degree of information content inherent to the visual representation of image 
objects. 

Entropy: The concept of entropy is used in many application fields from information 
theory to compression technology, medicine, economics, sociology, and mathematics. In 
ecology entropy has been used to measure the abundance of species in a given landscape, 
Chao and Shen (2003). Landscape fragmentation leads to decreased connectivity, increased 
isolation, and habitat loss, is often caused by anthropogenic activities, and has a large impact 
on biodiversity, Sala et al. (2000). Forman and Godron (1986) demonstrated that 
heterogeneity (pattern) and entropy could be considered as equivalent terms. Entropy has 
been used by Johnson et al. (2001) to characterize multi-resolution profiles of fragmentation 
pattern in landscapes. Joshi et al. (2006) used Shannon entropy as a measure of disorder of 
forest patches in remote sensing imagery over Northern India. The relation of entropy and 
several patch size metrics is discussed in detail in Bogaerts et al. (2005). They showed that 
fragmentation can be considered as the deviation from a contiguous space and its assessment 
is related to patch size diversity measurement. In thermodynamics, entropy describes the 
degree of disorder of the molecules in a gaseous system. In this paper we will transfer this 
idea of disorder into spatial geometry on raster images where we can think of entropy as a 
measure of the spatial disorder of target pixels and as such representing fragmentation. A 
concise overview on many aspects of spatial entropy can be found in Batty (1974).  

This paper aims at illustrating normalized and quantitative methods to describe the overall 
degree together with the spatial distribution of fragmentation. Such normalized indicators 
have the additional benefit to quantify temporal changes in fragmentation over a given image 
and enable a direct comparison of fragmentation when comparing different test sites. 
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2. Methodology 

This section describes three methods to quantify fragmentation. They are implemented in 
the free software collection GuidosToolbox, Vogt (2014), and available under the menu entry 
Image Analysis - Fragmentation. In general, the input image is defined as a categorical map 
(pseudo-binary raster mask of data type byte) with the assignment: 0 byte – missing data 
(optional), 1 byte – background, and 2 byte – foreground. Resulting images show normalized 
fragmentation values of the entire image as well as its spatial distribution. 
 
2.1 Contagion:  

Via an initial pop-up window, the user can specify the size of a square (kernel) window, 
which is then overlaid over each pixel of the input image, the metric is calculated for the area 
of the window, and the result is reassigned to the center pixel of the overlaid window in the 
output image (moving window approach). The contagion metric is calculated from the 
cell|cell adjacency values (edges). It is called P22 because we evaluate the proportion of 
edges having foreground on both sides (2b|2b). Here, we define N as the total number of 
edges between all pixels in cardinal directions, and the subset n as the number of edges that 
have foreground on one side or the other. All edges (N-n) that do not have foreground on 
either side are excluded in the metric calculation. If there are missing cells in the (kernel) 
window, the edges involving missing cells are not included. As a result, the total number of 
edges is less than N and the total number of edges involving foreground may be less than n, if 
missing cells are adjacent to foreground cells. P22 estimates the conditional probability that, 
given a foreground pixel, its neighbor is also foreground. For example, if all edges in the 
window have foreground on both sides then P22=1.0. Fragmentation can now be defined as 
the complement to contagion. 
 
2.2 Complexity 

Assuming fragmentation to be proportional to the amount of image information then it 
may be described via the degree of complexity of the image objects. For example, an image 
with a very simple object arrangement has little information content while a complex spatial 
distribution has more information content. The complexity of image objects is directly 
correlated to the compressibility of the image data. A suitable compression technology for 
this purpose must be lossless and spatially invariant to achieve similar results when 
processing the same image rotated by 90°. This requirement rules out many popular one-
dimensional compression methodologies like gzip, which work on a line-by-line basis. In this 
study we chose the compression methodology jpeg2000 (2000), which includes a lossless 
mode based on a 2D discrete (bi-orthogonal) wavelet transform filter, Akansu and Haddad 
(1992). We can then calculate the ratio of compressed to uncompressed image file size. 
Furthermore, this ratio can be normalized by scaling it into the range of minimum (empty or 
fully filled image) and maximum (50% cover and random distribution) range of complexity. 
The calculation of the complexity via compression ratio cannot be performed on a per-pixel 
basis but requires a statistically meaningful neighborhood area, or tile size. Ideally, the 
compression ratio for this tile size should then be calculated in a moving window approach 
over the entire image. However, in GuidosToolbox the complexity is calculated by averaging 
calculations using box size tiles of 50 pixels and 33 pixels and starting from the center of the 
image. Both box sizes provide sufficient samples to be statistically relevant and cover 
different sized neighborhood tiles at different corner locations in the image. After averaging 
the entropy calculations for the two tile size setups a final smoothing filter is applied in order 
to return a spatially contiguous per pixel distribution in the image. Internal tests have shown 
that this approach yields similar results compared to the slower performing moving window 
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computation. On the special case of the checkerboard the other two methods provide 100% 
fragmentation while this method will provide counter-intuitive results here: due to the highly 
regular arrangement of the pixels in a checkerboard the compressibility will be high and thus 
wrongly suggest a low fragmentation value. However, in real life a checkerboard constellation 
is unlikely to be found. The main purpose of this option is to show how the very simple 
concept of compressibility/complexity may be used as a quantitative fragmentation measure. 
 
2.3 Entropy 

Starting from the classical definition of entropy in information theory, Shannon (1948), 
we define the discrete set of probabilities Pi as the probability that the difference between two 
adjacent pixels is equal to i and log is the base 2 logarithm (Equation 1):  
 
𝐻 = − 𝑃! log(𝑃!)!                                                                                                                    (1) 
 
The original entropy definition has been implemented in many ways and it is important to 
distinguish the above definition of Pi from other commonly used indicators such as Shannon’s 
diversity index or the evenness index (where Pi is the proportion of species) and variations of 
contagion indices (where Pi is the proportion of different type of pixel edges). In short, in 
Shannon’s original concept Pi refers to percentages of species classes in categorical maps, as 
defined in the species diversity literature. In contrast, here we investigate differences between 
cell values in all 8 directions (that is, the values of i). This is meaningful because raster 
images exhibit continuous variables where their magnitude has meaning. While the entropy in 
the edge-type evenness, Wickham et al. (1996), is derived from the attribute adjacency table, 
the spatial entropy here is calculated on spatial tiles and assuming 8-connectivity for the 
foreground pixels of a categorical map. For a given amount of foreground area, an image with 
a single compact foreground object has minimum entropy while the entropy reaches its 
maximum value when the given area is split into the maximum number possible and 
dispersed over the entire image. Maximum entropy is thus found for a checkerboard 
distribution. These two boundary conditions define the possible range of entropy 
(fragmentation) in the image. As with complexity, the entropy calculation cannot be 
conducted on a per-pixel basis but requires a statistically meaningful neighborhood area. For 
the same reasons outlined before the moving window approach is replaced by averaging 
calculations using box size tiles of 50 and 33 starting from the center of the image and 
applying a final smoothing filter.  
 
3. Results and Discussion 

Figure 1 shows the normalized fragmentation as a function of contagion, complexity, and 
spatial entropy. In addition, a summary of the fragmentation values is calculated for the entire 
image, the foreground area only, and the range of foreground pixel values in the image. 
Together with the file name of the analyzed image these values are displayed in the tile bar of 
the user interface. In the panel below the viewport the user can activate and specify two 
threshold values in order to show geographic areas having low, medium, and high 
fragmentation values. Threshold values segmenting the range of fragmentation values may be 
selected from a drop-down menu or specified interactively. 

For all three approaches low fragmentation values are found in extended compact forest 
patches and high values in the upper right and lower central part of the image. By definition, 
contagion is more focused on the direct local neighborhood and for this reason exhibits 
highest values in areas being dominated by isolated small patches. The results for complexity 
and entropy are similar, with entropy having a slightly larger range of values. Even though 
their algorithmic nature is completely different this result is not surprising because both 
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concepts are descriptors of the information content inherent in the image objects. Compared 
to entropy the computation times are 1.5 for contagion and 3.0 for complexity. The batch-
processing option of GuidosToolbox for automated mass data processing provides only the 
options entropy and contagion. Complexity has been dropped here in favor of entropy, which 
performs faster, provides similar results, and provides the correct value of 100% 
fragmentation for the checkerboard case. 
 

  

  
Figure 1. Normalized fragmentation calculated on a binary forest map and expressed as a 
function of contagion (top left), complexity (top right), and spatial entropy (bottom left). The 
tile bar provides a summary of fragmentation values for the entire image, the foreground 
pixels only, and the range of values of the forground pixels. The image at the bottom right 
shows the segmentation of the bottom left image into areas of low, medium, and large 
fragmentation values driven by two user-selectable thresholds settings.  
 

Despite the fact of a common agreement on the generic meaning of fragmentation this 
widely used term triggers different associations in different research and application fields. 
The perception and scientific significance of fragmentation may vary depending on the 
thematic field, the species under study, the importance attributed to different aspects of image 
properties, and even the interpreter conducting the analysis. The lack of a concise quantitative 
definition for fragmentation may simply originate in the fact that it is virtually impossible to 
summarize all these aspects in a consistent way. For this reason we do not attempt to solve 
this riddle with a single solution but instead describe fragmentation as a function of different 
holistic concepts. Depending on the task entropy may be a more appropriate descriptor in one 
case while another researcher may favor contagion as a suitable descriptor for fragmentation 
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because his interest is more focused on isolated features. For this reason we provide more 
than one option in GuidosToolbox to measure fragmentation in digital images and further 
holistic approaches may be added in the future. 

The focus of this study was to provide neutral assessment schemes based on geometric 
concepts only and resulting in repeatable, normalized fragmentation values at pixel level. 
Instead of addressing and summarizing the many different aspects of fragmentation 
individually the proposed fragmentation measures apply holistic approaches using generic 
concepts of contagion, complexity, and spatial entropy. It is important to note that any 
subsequent statistical analysis in fact requires a reliable quantitative assessment of 
fragmentation. Moreover, normalized indices permit not only a concise state assessment on a 
given site but also the direct evaluation of fragmentation when comparing different sites. 
Finally, and when investigating temporal changes, the suggested indicators allow localizing 
and especially quantifying the extent of the fragmentation changes on the map. 
 
4. Conclusion	
   

This study described three methodologies resulting in normalized fragmentation metrics 
describing both, the overall degree as well as the spatial distribution of fragmentation of any 
categorical land cover type map in a digital raster image. Besides highlighting hotspots of 
changes the proposed indicators permit measuring, and thus quantifying the progress in 
biodiversity and landscape planning projects. The optional user-driven division into low, 
medium, and large values may be helpful for landscape planners to quickly pinpoint hotspot 
areas of high fragmentation for further observation or immediate treatment. The application of 
the suggested tools is facilitated through their provision in a free software package. 
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