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Abstract. This paper presents and evaluates a filter design based on stochastic distances and tests between dis-
tributions. A window is defined around each pixel, overlapping samples are compared and only those which pass
a goodness-of-fit test are used to compute the filtered value. The technique is applied to intensity SAR data with
homogeneous regions using the Gamma model. The proposal is compared with the Improved Lee filter using a
protocol based on Monte Carlo. Among the criteria used to quantify the quality of filters, we employ the equiv-
alent number of looks, line and edge preservation. Moreover, we also assessed the filters by the Universal Image
Quality Index and the Pearson’s correlation on edges regions. Application in the real images are assessed too. The
assessment and the proposed method show good results.
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1. Introduction
Synthetic Aperture Radar (SAR) data are generated by a system of coherent illumination

and are affected by the interference coherent of the signal. It is known that these data incor-
porate a granular noise that degrades its quality, known as speckle noise, which is also present
in the laser, ultrasound-B, and sonar imagery (GOODMAN, 1976). The noise makes the seg-
mentation, extraction, analysis and, classification of objects and information in the image hard
tasks.

Statistical analysis is essential for dealing with speckled data. It provides comprehensive
support for developing procedures for interpreting the data efficiently, and to simulate plausible
images. Different statistical distributions are proposed in the literature to describe speckle data.
In this paper we use the Gamma distribution to describe the speckle noise, and a constant to
characterize the ground truth (GAO, 2010).

Deledalle et al. (2011) analyzed several similarity criteria for data which depart from the
Gaussian assumption, viz., the Gamma and Poisson noises. In Deledalle et al. (2009) the same
authors extended the NL-means method to speckled imagery using statistical inference in an
iterative procedure. The authors derived the weights using the likelihood function of Gaussian
and square root of Gamma (termed “Nakagami-Rayleigh”) noises. In Deledalle et al. (2010), the
authors proposed the use of a nonlocal approach to estimate jointly reflectivity, phase difference
and coherence from a pair of co-registered single-look complex SAR images.

Yang and Clausi (2009) proposed a new method for filtering speckle that explores the sim-
ilarity based on structural patterns, namely structure-preserving speckle reduction (SPSR). In
this method the image is logarithmically transformed to convert the multiplicative noise into ad-
ditive noise. The SPSR filter uses the nonlocal means method with the objective of preserving
structures and edges.

Coupé et al. (2009) also used a logarithmic transformation and assume zero-mean Gaus-
sian noise to propose the Optimized Bayesian NL-means with block selection (OBNLM). The
OBNLM filter is an optimized version of the filter proposed by Kervrann et al. (2007) which
employs a new distance for comparing patches and selecting the most similar pixels.
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In this work we employ explicit expressions of stochastic distances between Gamma ran-
dom variables (NASCIMENTO et al., 2010) for the selection of patches inspired in the Nagao-
Matsuyama filter (NAGAO; MATSUYAMA, 1979). These distances are scaled to possess
known asymptotic properties which lead to p-values. These p-values are then transformed by a
nonlinear function before defining the NL-means filter.

The paper is organized as follows: Section 2 presents the statistical modeling used to de-
scribe speckle data. Section 3 describes the new method for filtering speckle. Section 4 presents
the metrics for assessing the quality of the filtered images. Sections 5 and 6 present the results
and conclusions.

2. The Multiplicative Model
According to Goodman (1976), the multiplicative model can be used to describe SAR

data. This model asserts that the intensity observed in each pixel is the outcome of the ran-
dom variable Z : Ω→ R+ which, in turn, is the product of two independent random variables:
X : Ω → R+, that characterizes the backscatter; and Y : Ω → R+, which defines the intensity
of the speckle noise. The distribution related to the observed intensity Z = XY is completely
specified by the distributions proposed for X and Y .

This paper focus is homogeneous regions in intensity images, so the constant X ∼ λ > 0
defines the backscatter, and Y ∼ Γ(L,L) models the speckle noise by a Gamma distribution
(with expected value E(Y ) = 1), where L is equivalent number of looks. Thus, it follows that
Z ∼ Γ (L,L/λ) and its density is

fZ(z;L, λ) =
LL

λLΓ(L)
zL−1 exp

{−Lz
λ

}
, (1)

where Γ stands for the Gamma function, L ≥ 1 and z, λ > 0. We describe different levels of
heterogeneity by allowing the number of looks L to vary locally.

The likelihood of z = (z1, z2, . . . , zn), a random sample of size n from the Γ(L,L/λ) law,
is given by

L(L, λ;z) =

(
LL

λLΓ(L)

)n n∏

j=1

zL−1j exp
{
− Lzj

λ

}
. (2)

Thus, the maximum likelihood estimator for (L, λ), namely (L̂, λ̂), is given by λ̂ = n−1
∑n

j=1 zj
and by the solution of

ln L̂− ψ0(L̂)− ln
1

n

n∑

j=1

zj +
1

n

n∑

j=1

ln zj = 0, (3)

where ψ0 is the digamma function (TORRES et al., 2012b).

3. Stochastic Distances Filter
The proposed filter is local and nonlinear, initially proposed by Torres et al. (2012a, 2012b).

It is based stochastic distances and tests between distributions (NASCIMENTO et al., 2010),
obtained from the class of (h, φ)-divergences. The proposal employs the neighborhoods defined
by Nagao and Matsuyama (1979).

Each filtered pixel has a 5×5 neighborhood, within which nine areas are defined and treated
as different samples. Denote θ̂1 the estimated parameter in the central 3× 3 neighborhood, and
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(
θ̂2, . . . , θ̂9

)
the estimated parameters in the eight remaining areas. To account for possible de-

partures from the homogeneous model, we estimate θ̂i = (Li, λi), i = {1, . . . , 9} by maximum
likelihood.

The proposal is based on the use of stochastic distances on small areas within the filtering
window. Consider Z1 and Zi random variables defined on the same probability space, charac-
terized by the densities fZ1(z1;θ1) and fZi

(zi;θi), respectively, where θ1 and θi are parameters.
Assuming that both densities have the same support I ⊂ R, the (h, φ)-divergence between fZ1

and fZi
is given by

Dh
φ(Z1, Zi) = h

(∫

x∈I
φ
(fZ1(x;θ1)

fZi
(x;θi)

)
fZi

(x;θi) dx
)
, (4)

where h : (0,∞) → [0,∞) is a strictly increasing function with h(0) = 0 and h′(x) > 0,
φ : (0,∞)→ [0,∞) is a convex function for all x ∈ R. Choices of the functions h and φ result
in several divergences.

Divergences sometimes do not obey the requirements to be considered distances. A simple
solution, described in Nascimento et al. (2010), is to define a new measure dhφ given by

dhφ(Z1, Zi) =
Dh
φ(Z1, Zi) +Dh

φ(Zi, Z1)

2
. (5)

Distances, in turn, can be conveniently scaled in order to present good statistical properties that
make them test statistics (NASCIMENTO et al., 2010):

Shφ(θ̂1, θ̂i) =
2mnk

m+ n
dhφ(θ̂1, θ̂i), (6)

where θ̂1 e θ̂i are maximum likelihood estimators based on samples size m and n, respectively,
and k =

(
h′(0)φ′′(1)

)−1. The null hypothesis θ1 = θi is rejected at a level η, if Pr(Shφ > η),
and since under mild conditions Shφ is χ2

M asymptotically distributed, being M the dimension
of θ1, the test is well defined. Details can be seen in the work by Salicrú et al. (1994). The
statistical test derived in this paper was the Kullback-Leibler test:

SKL =
mn
(
L̂1 + L̂i

)

m+ n

(
λ̂21 + λ̂2i

2λ̂1λ̂i
− 1

)
. (7)

The filtering procedure consists in checking which regions can be considered as coming
from the same distribution that produced the data which comprises the central block. The sets
which are not rejected are used to compute a local mean. If all the sets are rejected, the filtered
value is updated with the average on the 3× 3 neighborhood around the filtered pixel.

4. Image Quality Assessment
Image quality assessment in general, and filter performance evaluation in particular, are

hard tasks (MOSCHETTI et al., 2006; WANG; BOVIK, 2002). Moschetti et al. (2006) dis-
cussed the need of making a Monte Carlo study when assessing the performance of image filters.
They proposed a protocol which consists of using a phantom image (see Figure 1(a)) corrupted
by speckle noise (see Figure 1(e)). The experiment consists of simulating corrupted images as
matrices of independent samples of some distribution with different parameters. Every simu-
lated image is subjected to filters, and the results are compared (see Figures 1(f) and 1(g)).

Among the criteria used to quantify the quality of the filters, we employ (MOSCHETTI et
al., 2006):
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• Equivalent Number of Looks: in intensity imagery and homogeneous areas, it can be
estimated by NEL = (z̄/σ̂Z)2, i.e., the square of the reciprocal of the coefficient of
variation. In this case, the bigger the better.
• Line Contrast: the preservation of the line of one pixel width will be assessed by

computing three means: in the coordinates of the original line (x`) and in two lines
around it (x`1 and x`2). The contrast is then defined as 2x` − (x`1 + x`2), and compared
with the contrast in the phantom. The best values are the smallest.
• Edge Preserving: it is measured by means of the edge gradient (the absolute difference

of the means of strip around edges) and variance (same as the former but using variances
instead of means). The best values are the smallest.

A “good” technique must combat speckle and, at the same time, preserve details as well as
relevant information.

(a) Phantom (b) Corrupted, 1-look (c) Improved Lee filter (d) Kullback-Leibler filter

(e) Corrupted, 4-looks (f) Improved Lee filter (g) Kullback-Leibler filter

Figure 1. Lee Protocol phantom, speckled data and filtered images.

Furthermore, we also assessed the filters by the universal image quality index (WANG;
BOVIK, 2002) and the correlation measure βρ. The universal image quality index is defined by

Q =
sxy
sxsy

2xy

x2 + y2
2sxsy
s2x + s2y

, (8)

where s2• and • denote the sample variance and mean, respectively. The range of Q is [−1, 1],
being 1 the best value. The quantity

βρ =

∑n
j=1(xj − x̄)(yj − ȳ)

√∑n
j=1(xj − x̄)2

∑n
j=1(yj − ȳ)2

, (9)

is a correlation measure is between the Laplacians of images X and Y , where •j and • denote
the gradient values of the jth pixel and mean of the images ∇2X and ∇2Y , respectively. The
range of βρ is [−1, 1], being 1 perfect correlation.

The Figure 2 shows a block diagram for the method of assessment of the proposal.
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L̂1, λ̂1 L̂i, λ̂i

dhφ(Z1, Zi)SKL = mn(L̂1+L̂i)
m+n

(
λ̂2
1+λ̂2

i

2λ̂1λ̂i
− 1

)

Kullback-Leibler test

η = 1− (1− α)1/8

Bonferroni

if Pr(SKL 6 η)

Select data

x x

x

x̂ = λ̂1

x̂ = λ̂j

Filtered

Image Quality
Assessment

Z ∼∼∼ Γ(L,L/λ) Local

Operator

Maximum

Likelihood

Statistical

Test

Yes

Merge
No

Features extractions to assess

Figure 2. Block diagram for assessment of the proposed technique.

5. Results and Analysis
The proposal, unlike Torres et al. (2012a, 2012b), was compared with the Improved Lee

filter (LEE et al., 2009). The tests were performed at the 95% level of significance. The results
obtained are summarized by means of boxplots (see Table 1). Each boxplot describes the results
of one filter, generating 100 independent L = {1, 4} looks images, mean background λ = 30
and mean lines λ = 120.

The best values are highlighted in bold in Table 1. In the first and second situation, the
Improved Lee filter provides better results by a very small margin regarding the equivalent
number of looks and, by a large margin, with respect to edge variation only on first situation.
In all cases the differences are significative. This may be the result of the heavier blurring
introduced by this filter, as shown later in the application to real images.

5.1 Real data
Not every quality measure presented in Section 4 can be applied to real data, unless the

ground truth is known. One of the quality measures that can be used in this case is the Universal
Image Quality Index by Wang and Bovik (2002).

Figure 3 presents the results of applying the filters to an image obtained by the Danish
EMISAR L-band fully polarimetric sensor over agricultural fields of Foulum. The original
250×350 pixels image of the HH intensity band is shown in Figure 3(a), its filtered versions by
the Improved Lee and Kullback-Leibler filters are presented in Figures 3(b) and 3(c), respec-
tively.

6. Conclusions
This paper presented an assessment of the filter based on stochastic distances for speckle

noise reduction. The proposal was compared with the Improved Lee filter, using a protocol
based on Monte Carlo experiences. Moreover, the βρ and Q index were used to assert the
proposal. The proposed filters behave alike, and they outperform the Improved Lee filter in five
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(a) SAR data (HH polariza-
tion)

(b) Improved Lee filter,
Q = 0.540

(c) Kullback-Leibler filter,
Q = 0.707

Figure 3. Real data Danish EMISAR L-band (HH polarization) and filtered versions.

out of six quality measures. Other significance levels will be tested, along with different points
of the parameter space in order to have a more complete assessment of the proposal.
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