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Abstract. Atmospheric correction is a very important task that allows comparisons between image-based 

biophysical estimates and existing spectral libraries. Atmospheric correction methods based on radiative transfer 

provide good results as they account for scattering and absorption components effects of atmosphere over 

electromagnetic radiation, but the lack of ground-daily information of atmospheric parameters for radiative 

transfer-based models limits these methods operation. Our objective was to perform atmospheric correction of 

GeoEye-1 images using MODIS-based parameters as input data for the Moderate-Resolution Atmospheric 

Radiative Transfer Model (MODTRAN) code. That was achieved using aerosol optical thickness, Ångström 

exponent, and water column data extractd from MODIS Aqua data in order to obtain visibility, aerosol scale 

height, and atmospheric model to be used in MODTRAN. The results were analyzed from a set of pixels 

arranged in six land cover classes that were compared to the spectral libraries USGS and NASA/JPL, available 

online. Land cover classes of pasture, urban areas, forest, dark soil, medium soil, and light soil presents 

satisfactory combinations by the Spectral Angle Mapper method, used to compare spectra from the GeoEye-1 

images and spectral libraries. We conclude that the methodological approach presented is a promising standard 

of methods based on the retrieving of atmospheric information to perform radiometric corrections. 

 
Keywords: radiative transfer, visibility, aerosol scale height, transfrência radiativa, visibilidade, altura de escala 

do aerossol. 

  

1. Introduction 

Remote sensing is a technique widely used for earth surface components examination. 

However, additive and multiplicative effects from the atmosphere over electromagnetic 

radiation hamper target identification in satellite images. Atmospheric correction reduces this 

difficulty, and allows estimating biophysical characteristics from the targets, using satellite 

imagery data (Vicente and Souza Filho, 2011). 

Radiative transfer-based atmospheric correction models simulate the propagation of sun 

electromagnetic radiation through the atmosphere and have the advantage of correcting 

atmospheric scattering and absorption components effects (Ju et al., 2012). Even though 

radiative transfer-based models solve these issues, they require specific atmospheric 

characterization from the imaged area at the exact time of scenes acquisition, which is often 

not available for all locations (Gomes et al., 2013; Ju et al., 2012; Vermote et al., 2002). 

The Moderate-Resolution Atmospheric Radiative Transfer Model code (MODTRAN) 

performs atmospheric correction of images and is able to estimate a wide variety of 

parameters it needs to correct the images (Adler-Golden et al., 1999). But MODTRAN 

estimates are based on spectral characteristics of the image to be corrected. Though, if the 

image do not have bands in the shortwave infrared channel around 2.1 micrometers (µm), for 

example, MODTRAN cannot estimate the image visibility or the aerosol amounts that affects 

the atmospheric scattering of electromagnetic radiation (Research Systems Inc., 2005; 

Kaufman et al., 1997). 
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GeoEye-1 satellite produces images with spatial resolution of 2 m in its four multispectral 

bands and has radiometric resolution of 11 bits per pixel per band. However, GeoEye-1 does 

not measure radiation at 2.1 µm (Arnold et al., 2013), thus it cannot generate intrinsic 

estimates of aerosol amounts in order to perform atmospheric correction of its images. 

The Moderate-Resolution Imaging Spectroradiometer sensor (MODIS) onboard Aqua and 

Terra satellites is able to retrieve aerosols data by a combination of its spectral reflectance 

data and the simulations of optical models of aerosols conditions registered in lookup tables 

(Remer et al., 2005). Beyond that, MODIS data are distributed not only as raw data, but also 

in thematic products developed to take advantage of MODIS near-daily observations 

repeatability at global scales (Remer et al., 2005). These products include the Giovanni portal, 

a website that permits visualization and retrieval of atmospheric parameters not only from 

MODIS, but also from many sources of information (Acker and Leptoukh, 2007). MODIS 

atmospheric data quality allows the use of its information as a basis to perform atmospheric 

correction of other images (Gomes et al., 2013). 

In this context, our objective is to propose the use of MODIS atmospheric products data 

in order to obtain input parameters for atmospheric correction of GeoEye-1 images. The 

method we present here was previously tested in Landsat TM images (Gomes et al., 2013), 

and continues our efforts in getting thorough atmospheric correction of images acquired in 

tropical regions, where atmospheric characterization data is not systematically available. 

 

2. Methodology  

The study area comprises two GeoEye-1 images taken in the northwestern region of São 

Paulo State, Brazil (Fig. 1). Each image is the result of composition between five scenes 

acquired from October 24
th

 2013 to November 11
th

 2013. GeoEye-1 imagery has spatial 

resolution of 0.5 m in panchromatic band, and of 2.0 m in the multispectral bands. The 

spectral bands are: blue (0.45 – 0.51 µm) , green (0.51 – 0.58 µm), red (0.655 – 0.69 µm) and 

near infrared (0.78 – 0.92 µm). at a quantization level  of 11 bits per pixel per band (Arnold et 

al., 2013). 

We transformed digital numbers values of both images to radiance values using Arnold et 

al. (2013) method. Then, we used the radiance images as input data to run MODTRAN 

atmospheric correction. MODTRAN is able to correct images using water vapour estimates, 

elevation data, visibility estimates and spectral polishing method (Adler-Golden et al., 1999). 

Nevertheless, the atmospheric data that MODTRAN needs to perform atmospheric 

correction are very difficult to be obtained during image acquisition time. We overcame this 

issue using MODIS Aqua data retrieved from NASA Giovanni portal (Acker and Leptoukh, 

2007) available online at http://disc.sci.gsfc.nasa.gov/giovanni. Giovanni MODIS Aqua 

aerosol optical thickness and Ångström exponent data from October 24
th

 2013 were used to 

estimate initial visibility (V) to both images, using Equation 1(Gomes et al., 2013; Ponzoni et 

al., 2007; Deschamps et al., 1981): 

 

            
      

 

     
       (1) 

  

where λ is wavelength in micrometers (µm), defined as 0.55 µm in MODIS data, τa(λ) is 

aerosol optical thickness at 0,55 µm, retrieved from Giovanni MODIS Aqua data, and α is 

Ångström exponent also retrieved from Giovanni MODIS Aqua data. 

Aerosol scale height (za) values are retrieved according to Equation 2 (Gomes et al., 2013; 

Wong et al., 2009): 

 

    
        

     
      (2) 
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Figure 1. Study area contextualization and GeoEye-1 images used in this work. 

 

We selected MODTRAN atmospheric model according to the water vapour values 

obtained from Giovanni MODIS Aqua data, as described in Gomes et al. (2013) and in 

Research Systems Inc. (2005). 

All these calculations can be performed in Embrapa’s Laboratory of Spectroradiometry 

(Labspec) site, available online at http://mapas.cnpm.embrapa.br/labspec, where users can 

sign up, choose image coordinates, and acquisition time in order to obtain MODTRAN 

parameters and perform atmospheric correction.  

Field measurements were not available to validate atmospheric correction. Then, in order 

to discuss the results, we analyzed similarities between the mean spectra of seven land cover 

classes in both images and reference spectra obtained from Aster Spectral Library, available 

online at http://speclib.jpl.nasa.gov/, and USGS Digital Spectral Library, available at 

http://speclab.cr.usgs.gov/spectral.lib06 (Baldridge et al., 2006; Clark et al, 2007). The most 

evident land covers selected in the images were: pasture, forest, urban area, water and 3 

different classes of soil, according to their colors. We chose the Spectral Angle Mapper 

(SAM) algorithm for spectral analysis due to its sensitivity and capability of non-illuminated 

pixel analysis (Kruse et al., 1993). As SAM values are inversely proportional to reference and 

test spectra similarity, we modified the index in order to avoid counter-intuitive 

interpretations, using the Equation 3: 

 

                       (3) 

 

3. Results and discussion 

The lack of field measurements leads us to analyze the atmospheric correction results by 

comparing the corrected image spectra with reference spectra obtained from USGS and 

NASA/JPL (Clark et al, 2007; Baldridge et al., 2006). For each class, table 1 shows 

SAMadjusted values for all reference spectra that reach a minimum of 0.9 in the two GeoEye-1 
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corrected images. For pasture areas, SAMadjusted minimum threshold value is lowered to 0.8, 

since maximum SAMadjusted in this class is 0.867. Water class spectrum has no good 

correspondence with any reference spectra, as shown in table 1 and fig. 2d, thus we show only 

the reference spectrum with better correspondence to water spectrum. It is important to 

highlight that SAMadjusted values are not determined only by spectral similarity between 

spectral data, but also by the projection of shadow effects over spectral signature (Kruse et al., 

1993). 

SAMadjusted maximum value of 0.867 for pasture class correspondence with reference 

spectra is due to high mixture levels between soil and vegetation components in pasture areas. 

The best-fit to pasture class spectra is a reference spectrum measured from a whole specimen 

of rabbitbrush (Chrysothamnus nauseosus), leaves and stems included. The presence of stems 

in reference spectrum sample produces attenuation in visible spectrum absorption feature and 

in near infrared reflectance increase typical to green foliage reflectance (Asner, 2004).  

  

Table 1. SAMadjusted values for each reference spectra per land cover class in GeoEye-1 

atmospherically corrected images. 
Class Reference Spectrum SAMadjusted 

  Image1 Image2 Avg 

Pasture Rabbitbrush ANP92-27 0.867 0.867 0.867 

 Olive green paint 0407 0.831 0.825 0.828 

 Cuprite HS 127.3B 0.813 0.837 0.825 

 Olive green paint 0408 0.821 0.820 0.821 

Forest Lawn Grass GDS91 (Green) 0.993 0.910 0.952 

 Blackbrush ANP92-9A leaves 0.931 0.965 0.948 

 Maple Leaves DW92-1 0.973 0.921 0.947 

 Aspen Leaf-B DW92-3 0.950 0.938 0.944 

 Pinon Pine ANP92-14A needle 0.909 0.961 0.935 

 Aspen Leaf-A DW92-2 0.915 0.947 0.931 

Urban 

Area 

Paleustalf 87P473 (Dark reddish brown fine sandy 

loam) 

0.976 0.915 0.946 

 Grossular NMNH 155371 0.927 0.962 0.945 

 Spessartine HS112.3B 0.936 0.935 0.936 

Water Hypersthene PYX02.c 180um 0.402 0.000 0.201 

Soil 1 Grossular NMNH 155371 0.961 0.986 0.974 

(dark) Paleustalf 87P473 (Dark reddish brown fine sandy 

loam) 

0.962 0.927 0.945 

 Spessartine HS112.3B 0.939 0.933 0.936 

 Haplustalf 87P3665 (Brown fine sandy loam) 0.943 0.900 0.922 

 Sauconite GDS135 0.927 0.911 0.919 

 Fragiboralf 86P1994 (Pale brown silty loam) 0.934 0.902 0.918 

Soil 2 Sauconite GDS135 0.936 0.965 0.951 

(medium) Siderite HS271.3B 0.945 0.950 0.948 

 Grossular NMNH 155371 0.963 0.905 0.934 

 Paleustalf 87P473 (Dark reddish brown fine sandy 

loam) 

0.954 0.906 0.930 

 Haplustalf 87P3665 (Brown fine sandy loam) 0.936 0.908 0.922 

 Hematite 2%+98% Qtz GDS76 0.901 0.933 0.917 

 Monazite HS255.3B 0.908 0.916 0.912 

Soil 3 Sphalerite S102-8 0.984 0.967 0.976 

(light) Haplustalf 87P3468 (Brown loamy fine sand) 0.978 0.957 0.968 

 Haplustalf 87P3671 (Brown fine sandy loam) 0.963 0.968 0.966 

 Almandine HS114.3B 0.951 0.956 0.954 

 Xerumbrept 87P325 (Brown to dark brown gravelly 

fine sandy loam) 

0.948 0.949 0.949 

 Hapludult 87P707 (Brown to dark brown loamy sand) 0.933 0.958 0.946 

 Nontronite SWa-1.b <2um 0.958 0.930 0.944 
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Class 

(cont.) 
Reference Spectrum 

(cont.) 
SAMadjusted 

(cont.) 

  Image1 Image2 Avg 

 Spessartine NMNH14143 0.942 0.939 0.941 

 Nontronite SWa-1.a 0.945 0.924 0.935 

 Tumbleweed ANP92-2C Dry 0.932 0.936 0.934 

 Sphene HS189.3B 0.934 0.933 0.934 

 Quartzipsamment 87P706 (Brown to dark brown 

sand) 

0.911 0.946 0.929 

 Plaggept 85P3707 (Very dark grayish brown silty 

loam) 

0.932 0.915 0.924 

 Andalusite NMNHR17898 0.900 0.940 0.920 

 Haplumbrept 88P4699 (Brown sandy loam) 0.916 0.917 0.917 

 Praseodymium Oxide GDS35 0.907 0.921 0.914 

 

This attenuation is probably the reason of the similarity between this reference and 

pasture class spectra. Other reference spectra with high correspondence with pasture spectrum 

are two olive green paints signatures resembling green leaves spectral signatures, and a highly 

absorbing signature of the copper oxide mineral cuprite (Fig. 2a). Even if cuprite is not 

actually present in this scene, this result suggests that the mineral composition of the soil 

component background in pasture class may be dominated by highly-absorbing minerals in 

visible spectrum. As long as pasture class reflectance spectrum behaves as a mixture of bare 

soil, nonphotosintetic vegetation and green vegetation (Kaplan et al., 2014; Magiera et al., 

2013), we assume that the proposed atmospheric correction generates coherent pasture 

reflectance data in GeoEye-1 images. 

Forest spectra have better correspondence with reference spectra related to green leaves 

measurements, regardless of leaf size or canopy structure (Fig. 2b). The best results are in the 

visible bands, where reflectance values are almost the same registered in all reference spectra. 

The best-fit reference spectra for forest class is a generic lawn grass, which is the spectrum 

that possess the greater NDVI value among all reference spectra used in this analysis. Lower 

values for near infrared band in GeoEye-1 spectra of forest class may be related to shadow 

effects produced by canopy structure in some pixels of this class. This result confirms that the 

proposed atmospheric correction works consistently for forest class reflectance as well. 

Urban area spectral analysis is a difficult task to perform due to the heterogeneity of its 

constituent materials (Lu et al., 2011). In our GeoEye-1 images, urban area land cover class 

shows dominance of soil-like materials, like bricks and rooftops, associated with asphalt, 

grass and trees. The spectral signature of urban area class presents soil features, so that the 

best-fit reference spectrum is a sample of the soil class Paleustalf, which is described as a 

dark reddish brown fine sandy loam(Fig. 2c). This soil class description matches the 

description of clays that can be used in construction materials production (Salim et al., 2014), 

and therefore, endorses our proposed atmospheric corrected data as credible urban area 

reflectance data. 

Water class spectrum do not correspond well with any reference spectra used in our work, 

because we did not use any water reference spectrum measured in visible to short-wave 

infrared channels (Fig. 2d). Even though, the only fit reference spectrum is a sample of 

hypersthene, an orthorhombic pyroxene currently known as enstatite, that gets an average 

SAMadjusted value of 0.210. Hypersthene spectrum matches only with water spectrum of 

GeoEye-1 image 1, and this match probably occurred because water spectrum resembles 

poorly a shadow spectrum of hypersthene. Water class spectra in both images show bad 

results in near infrared channel, with reflectance developing negative values. Consequently, 

this result leads us to consider that the proposed atmospheric correction is not working 

properly for water reflectance data in GeoEye-1 images. 
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Figure 2. Spectral signature for GeoEye-1 corrected images and best-fit reference spectra 

determined by SAMadjusted for land cover classes with no bare soil fraction dominance. Thick 

black lines are reference spectra with the best SAMadjusted value of each class. 

 

Both spectral libraries we used as reference have many examples of minerals and soils 

spectra due to the high sensitivity and variability of their spectral features. We could not take 

full advantage of this variability in our analysis because part of these features occurs in 

infrared spectral channels out of GeoEye-1 images spectral reach, or because some of these 

features are spectrally too narrow to be detected in GeoEye-1 imagery. Consequently, 

SAMadjusted analysis results for soil classes are very wide, indicating up to sixteen different 

reference spectra as correspondent to the soils classes. Nevertheless, these “best-fit” reference 

spectra are intrinsically coherent and converge to similar results in all three classes of soil. 

Most of reference spectra related to GeoEye-1 soil classes show spectral characteristics 

that resemble tropical oxisols reflectance in visible and near infrared channels, even in the 

case of minerals not related with oxisols. The most evident feature is a strong wide absorption 

band in blue to green channel, which indicates the presence of iron oxides which are common 
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in tropical soils. Moreover, a simple visual analysis of Fig. 3 leads us to conclude that most of 

reference spectra related to a same soil class can be considered as spectral shadows variants 

from each other. This shadow-like similarity is evident even in monazite spectrum related to 

soil class 2, taking into account that the spectral absorption bands that monazite displays in 

visible and infrared channels are too narrow to affect GeoEye-1 bands reflectance. 

 

 
Figure 3. Spectral signature for GeoEye-1 corrected images and best-fit reference spectra 

determined by SAMadjusted for land cover classes with bare soil fraction dominance. Thick 

black lines are reference spectra with the best SAMadjusted value of each soil class. 

 

Additionally, reference spectra assigned as best-fit to each class of soil are consistent with 

the soil class spectral signature format: soil class 2 spectral signature has more marked 

absorption band in 0.5 – 0.55 µm channel; in soil class 1, the same absorption band is 

smoother than in soil 2 class; and in soil class 3 this absorption band is nearly 

indistinguishable. It is worth highlighting that the only non-mineral spectrum correspondent 

to the soil classes is a dried tumbleweed spectrum analogous to white-colored soil class 3. In 
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this context, we can conclude that our atmospheric correction methodology generates 

consistent spectral data to soil spectra in GeoEye-1 imagery. 

 

3. Conclusions 

We applied MODTRAN atmospheric correction in two GeoEye-1 sets of images, using 

parameters derived from MODIS-Aqua atmospheric products. Despite the lack of field 

validation, we demonstrate that this atmospheric correction approach generates reliable 

reflectance data for different land cover pixels. Spectral analysis of corrected data using 

USGS and NASA/JPL reference libraries as ground truth data shows that spectra of pasture 

class in GeoEye-1 present adequate correspondence with whole-plant rabbitbrush spectrum 

and with cuprite spectrum, indicating a mixture of soil and vegetation fractions, typical of 

pasture areas. Spectra of corrected forest pixels are extremely similar to green leaves 

reference spectra, and have excellent correspondence to reference spectra reflectance in 

visible channels. Urban area spectra demonstrate similarity with soil reference spectra, 

because of the composition of rooftop tiles. And soil spectra match with a wide range of soil 

and minerals reference spectra intrinsically coherent and related to tropical oxisols reflectance 

spectra. Water spectra represent the only land cover class that generates poor results in its 

reflectance spectrum. 
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